e

™9
~
Ve
A
=)
~
<

STANFORD ARTIFICIAL INTELLIGENCE PROJECT August 1, 1968
MEMO AI-66

AN ALGOL-RASED ASSOCIATIVE LANGUAGE

by

J. A. Feldman and P. D. Rovner

ABSTRACT: A high-level programming language for large complex
relational structures has been designed and implemented.
Thée underlying relational data structure has been imple-
mnented using a hash-coding technigue. The discussion
includes a comparison with cther work and examples of
applications of the language. A version of this paper
will appear in the communications of the ACM,

y A
| DS R
. SEP 247964
[-a
LJ.

The research reported here was supported in part by the Advanced Research

Projects Agency of the Office of the Secretary of Defense (SD-183),

Reproducsd by tho
CLEARINGHOUSE
ler Feders! Scianhfic ., Tachnical
Information Springhigid va Zél‘ﬁl

Waieds e

| B s i

& R 4
'iv
7 An Algol-based Associative Language
: Jeraome A, Feldman
Computer Science Department
Stanford University, Stanford, California
i Paul D. Rovner g
: M,I,T, Lincoln Laboratory ‘
Lexington, Massachusetts

“»
“r
i
£, S - T Tt o - :"
e - ~ e

1
€ |
An ALGOL-based associative language :
i
1. The LEAP language 4}
a. Introduction *
b. Data types ;
c. Expressions : j
; 1
d. Statements
e. Shample programs g
k|
2, The LEAP data-structure
o
(,‘ a. Introduction and discussion of previocus work
b. Design and implementation !
3. Conclusions
References
{
i
i
|
1
|
|
|
|
i1 §
]
e e

R [i - A

NP

PR}~ MG

ﬂm I

;
£
3
3
|
;

i) "\'_Hmfwnmﬂmwmmwmnmwmnmgflrwlvrql

S A TR

Yy

1. The LEAP Language

l.a. Introductinn

Associative memory, the accessing of data through a partial
specification of its contents, has long been a subject of interest in
Computer Science. Although it is no longer coasidered a panacea, asso-
clative memory has proved to be of great value in artificial intelligence,
operating systems and computer aided design and is a major aspect of in-
formation retrieval. Various proposals for building large hardware
associative memories have not materialized [12) and essentially all the
applicetions to date have depended on softwere schemes of some sort. In
this paper, we present a programming language for software associative
menory systems and describe a particular scheme which seems .0 have geveral
nice properties.

There are two basic problems in designing any programming system:
ease of use and efficiency of execution. 1In this section we discuss a
programming language which users have found convenient for associative
processing; Section 2 describes an implementation of the language which
is quite efficient over a range of problems.

The language, LEAP, is an extension of ALGOL [22) to incluae
associations, sets and a number of auxiliary constructs. The problem of
describing a programming language in a journal-size arti~iz is quite
difficult, especially if the system contains new ideas. The prchlem is
further exacerbated in this case by the fact that LEAP is really a family

of languages, each adding a different set of features to the ALGOL base.

b A b, it]

G Besides the construcls described here there are forms of LEAP with matrix

operations, property sets, and on-line graphics [29, 30). Even the associa-

Dol

tivce lunguage has two campiicrs: one whic's dves dynamic type checking al
execution vime and another (described here) which does nou. This notion
of fluid language specifications runs against the current emphasis on
standardized languuges and will be cousidered further.

The fluidity of the LEAP design is largely due to its implementia-
tion by mecans of the translator writing system, VITAL [9, 20). Our varia-
tion of ALGOL (alsv described in [20)) was purposcly designed with possibi-
1ity of being extended, and various applicatlions groups have tajlored it
| to their needs. With such a system and a geod linkage editor, there seems
Lo b no advantaye to standardization. We view the design of better uni-
veorsal Jan_uage like the design of belter crutches — not of direct interest
Lo theoo possessing complete facilitics.

This etritude Loward programming languages has also influenced the
stylce ol this paper. Rather than altempt to spell outl in detail every nuance
of the lansuape, we have concentrated on the major details. Although LEAP

is even less context-free than other programnming languages, we have expressed

the form of comstructs in Packus-Naur Form., The sections con semantics and
prapuatics, and the examples serve to delimit the syntactically correct con-
structs which arz meaningful. The complete formal description of LEAP in

the totation of VITAL (cof. [9)) is available from the authors. This descrip-
tion dees not include the date-structure implerentation which was done sepa-

rately aind o dosceribed in Section 2. A .ranslulor writing system capable

e a1t b B

of auturaling data-structure design would be a significant contribution to

C the field [J0].

no
OOl 3 s o A i

Ul SAALLLL

“»

- i

VAT T IR Ty e T T T T T

Many of the ideas in the associative language, LEAP, have

occurred befcre. If we consider an association to be a triple:
attribute of object is value

we see that the earliest list processing systems (18, 23] included some
assoclative processing. By considering an associative structure as a
colored, directed graph we can rela@e our work to string and tree manipu-
lation languages. Both these developments have been recently surveyed
in [3]. Another field ia which associative structures have played a
centrel role is information retrieval [5]). Sets have appeared in simu-
lation languages [32] among others.

The LEAP system is a continuation (7, 26, 27] of our earlier work
on associative processing., The new problems attacked were the development
of a convenient language for handling complex collections of associations
and the extension of the hash-coding structure techniques to & paging
system, We were also interested in the implications of LEAP a&s a non-
procedural languege; the sequencing cf associative retrieval statements
is decided by the translator and the complexity cf this process (ef. [13])
portends a difficilt future for non-procedural systems. The LEAP system
has been running on the Lincoln Laboratory TX-2 since early 1967 and has
been used in & number of gpplications, some of which will be discussed in

Section 3.

1.b. Data types

The basic objects of manipulation in the system are the item

Al it N el b1

and an ordered triple of items called an association, a relation or

Just a triple. 1In addition to items, we introduce the auxiliary notions

T v

of set, itemvar, and local variables.

l1.b.)l. Syntax

<simple type> ::i= real | integer | boolean
<=lgebraic type> ::= <gimple type> I <simple type> srray

<leap type> ::= item | itemvar | local

<type> ::= <algebraic type>] <lecap type |gg:£ |

<algebraic type> <leap type-

E 1 ' examples:
|
| g ’et gons
1 reel gtem pi
-
i E loc_’ X
=
']

!

1.b.2. Semantics

A variable of algebraic type behaves exactly like an AIGOL variable.
An item is & symbol, like & LISP [16]) atom, which can be manipulated
by the system. If an item is declared with an algebraic type, it will
also have an associated dgatum of that type. Tnus there are some simple

variables which can be used only algebraically, some which can be used

&

only symbolically and some which can be used in either manner. A 33} is

e e s e T

e i L L

THit{H?

o

il

AT Rt

:
i
t

LI e T

T e T

<<

an unordered collection of items containing at must one occurrence of
any %&gy.

An itemvar is a variable whose value is an item (it is a reference
(L S v .

[36, %7) to an item). A local is en {325335 which obeys special binding
rules and is used only in a restricted sel of contexts (of. Section 1.d;
the earliest use of locals was in the string processing languages [3]).

If an itemvar (Legg}) is declared to have an elgebraic type, the item which

is the value of the itemyar (%232}) is assumed to have a datum of that type

in algebraic opersations.

1.b.3. Pragmatics

The division of variables into algebreic, symbelic and combination
types 1is for efficiency reasons. The combination variable requires twice
as much space as either of the others and produces slower code than the
algebraic verlable. Sets are implemented by a linked list ordered by the
internal code of the items; this allows the system to carry out, e.g., set
comparisons in time proportional to the sum of the size of the sets rather
than their product.

There are a variety of ways to organize levels of reference within
a programming system. LISP, for example, allows any level of referencing,
but gives the user the responsibility for keeping things straight. ALGOL
is essentially a uniform single-level system. In ALGOL 68 [33], the system
accounts for any level of reference, but imposes rigid conventions on their
use. The system adopted here provides three levels: itemvars and locals,
items, and algebraic data. More elaborate referencing structures can be

ouilt using associations, but are the user's responsibility.

l.c. Expressions

The additional expressions required for LEAP are divided into

those which yield algebraic values and those whosc values are leap types.

l.c.l. Byntax

<sdditional algebraic expressior>::=datum(<item expressiom>)|
count(<set expressior>)
o v
<additional boolean expression>::=<item expressior> € <set expressior> |
<set expressior> C <set expressior> l
<get expressior> = <get expressiom> |
ipl
istriple (<item expressior>)

<item expressiarb::= <item> | <itemvar> | <local> | (<triple>) | any |

new (<elgebraic expressior>) | <selector> <item expressiorn>

<set expressiom>::= @ | <set> | {<item expression list>} |
<set expressiorn> <set operator> <set expressior> |
<item expression> <ussociative operator> <associative
expressiomn>
<associative expression>::= <item expression> | <set expressior>
<triple>::= <iten eﬁcpressiorb + <agsociative expressiorm> = <associative
expression>

<set vperator>::=N | U | -

<associative operator>:i= . | ' | *
<selector>::= first | second | third
6

g

KN RYETTY

s gt

NGl A L A A 5w s R s

e S —
oz N A |

' - T T e - - T - - S e
{
1
i
i
£
£
v E
" ¥
[
i
t
r
§ e examples: count. (sonn) < antaa (1i11) 0%
CoE [_bi_‘l‘., tom] (wens U rather'don)
: namber - (part - heod s finges) tonew ()
Lok
1 H - .
o l.c.2. Semantics
i H
.G Any <item expression- yiclds an item as its value. If the item
: has an asscciated alpebraie datum Lhen datwn will yield its value, other-
N [S S S V'
3 wisc QEme is undetfined. Any <sot expression> ylelds a sel as its value.
B Bl " A A
: The value of gount is the number oi items (> 0) in the set. The boolean
reletions, menber (C), contoined (€) and sel equulity (=) have their
: usual meanings. The predicato iég;§p1: is true if its argument evaluates
. to @i jtem which is o parenthesized triple (cf. next paragraph).
£) .) .
: . Either su itenvar o & local can be used wherever an item can. There
H A At Byt
é is a forcing conventicn [3] wihreh uses the velue (an é{gy) of the lecal
3
E or itenver in these cases. The tescrved item any can only wppear in triples
£ .
i which sre nol operands of moic (. 1.d.2). Yl w:ary operelor new causes
5 A
1 a uew Iten of the Lype of the ~advbrais capressivne. A Lriple enclosed
x
E
z in parentheses is alsc an <itwn expresciomn>; a position (first, second,
3 or third) cf such an <item expression- can be accessed by a <selecto>.
T 1
' 3 example:
! cxampe
| ¥ numter - {part - Land = rirger) = aew (5)
A - —— s T e rev
I 4 In the construction of this triple, the system
*
; 3 1) forms a triple: pret o bagwd = finger

2) creates an iten Trok the triple in 1)
%) creates a nLcw %ﬁkﬂiiﬁ %ng iritialized te 5

L) formc the triple from il and the items of 2) and 3)

1y
pl
i

arel Loi Jdirrarence ece dedined in the usuval way.

The Finnal arloraative -Jihen ey osnlon.

tociat ive Oporuior Jacso-
cinbive expresaion- of ool exprnsiws I8 apecified in Lterms of Lhe

Uhiverss o Aripton T i

,.
~
=
'y
Ty
a
“.
.
I
=
P
o
~
-~
R4
)
”~y
s
o
z
a
7
n

with velucs P oand § then

. A v . s
Poog is tie st o dnoms X} sueh ihau Pooo§ T X

15 un the universce 20 triples.

- . . : Car . i ' -
PG is e sononr Sear XK ocuch thet Pooox ooy

is Yo Uhe universn ol Lrip

~
i
2

e

w el . . < [% ST [0 5 BT
' 4, 3 U o
SLhLll vl A1 nCUvaln st
) . v, L
B P R T SV AN
A . . 4 YT . 3 . : Yeopee - :
Iy U (G FPE [SERSATAN SE R SSE e R TI ST HTE 1(41"..‘1!(, TOnVenLion
(RN
N . - 1 J Y -
to Lhe wrannvery v e O dneclude 4l nn v ! Toodnpas
PR

plive we oo e b Dopastant SurociTeelive use of LEAP. The dm-
Vet Dot s e v Loeed had ool this paper;
v D oo W e ded s Ineade Lhe various

Atafrs o atlos Lollioans) Ll oaaogiztic s oare naturelly selb-velued

el Vil ool Corauiitiatabior Peui cned Wil b in the system
P P S
3
3
- P — . i

vl

il

whnson

3
=
i
E
S

——— L Lthy H,,"g,]

g

[T

ot | YR T e o

-..'ulW'mn . N1~ DA e -

1.4, Btatements

There are relatively few new statement types in LEAP because

the control structure of ALGOL was largely adequate for our purposes.

l.4.1. S8Syntax

<additional statement>::= <set statement> | <assocliative statement>
<loop statement>
<set statement>::= put <item expressior> in <set> |
put A
remove <item expressior> from <set> |
AN P
<get> + <set expressior>
<assoclative statement>::= make <triple> | erase <triples |
MA,Q ’V‘\l\'\-—
delete <item expression> |
AAAA~
<itemvar> <~ <item expressior>
<loop statement>::= foreach <local> in <set expressiomn> Q‘&C.sta‘cemenb |
Ll S O Vg A &
foreach <gssociative context> do <statement>
LA AAAs Lo
<assoclative context>::= <element> | <ussociative context> and <eiement>

<element>::= <admissable triple> | <boolean expressiom |
<local> &2<set expressiomn>

examples:

Rut tom in sons

gons - gons U (tom]

mgke father - tom = bill

foreach x in sons do datum(x) « wyvm(g)+2

.ﬁﬂﬁ}‘x father + x £ bill de p:.‘c b4 i:\ﬂqp_rg

)

SR o e —— e - e e e ——

|
|

1.4.2. Semantics

The set assignment statement copies the value of the <set ex-
pressiort> and assigns the result to the set variable. The R&E (ggmgxg)
operation is simply a more efficient way of doing union (subtraction)
of a single element. The gake (erasg) statements cause a new triple to
be added to (subtracted from) the universe of triples (ef. Section 2.b.
for detuils). An {tem which was created by a hew expression cen be des-
troyed by gslgss. The internal identifier sssociated with this item will
be reagsigned and it is the user's responsibility to assume that there are
no uses of a deleted item.

The <loop statementg> are the raison d'etre for the entire system
and will be considered in some detail. The first alternative describes
the loop over the elements of a <set expressior>. The <set expressior>
is evaluated once and the <statement> is executed once for each member
of the resulting set. The local is the loop variable and is assigned the
successive elements of the set; it is treated as an itemvar within the
<statemen®>.

The loop statement over an <associative context> is much more
camplicated. An associative context determines a set of simultaneous
relational equetions which the system must solve to determine the values
of the loop variables. A loop variable is a Jocal appearing in the asso-
ciative context which has not been bound in an enclosing loop. The set of
values for each loop veriable is determined once at the beginning of the
loop and the <stetement> executed repeatedly with the loop variables bound
to each value in turn. The construct <edmissable triple> is meant to convey
the fact that certain syntactically correct <triple>s are not meaningful

in an <associative context>. The compiler detects the following cases.

10

e —

RTTE UL O RPN |

[T DR TR

anler

1l Hi

e i i R s v

LTI X

Lot g

o AR, TR T RIS 470 TR A8

RIS TS

T

B e e el

a) the triple contains no unbound local

b) the triple contairs three unbound locals

c¢) the unary operator new appears in a triple,
The <boolean expression> and <set expression> elements of an associative
cantext serve to restrict the set of values which can be assigned to a

loop variable, We will discuss the processing of a loop statement with
the aid of examples:

1) foreach x in sons do datum(x) « datum(x)+2
AAAALA, T e T AR WAL e
This 18 a loop over a <set expresslon> which 1s simply a set sons.
If x has been declared integer local, then the effect of 1) will be to

increase by 2 the datum associated with each item in sons .

2) mh father .Lsmgsw'ggsw

We assume that 'father and bill are items, x* is & local and

sons 1is a set; the algebraic type of any of these variables is irrelevant.

The system first computes the set of items {ol,... ok} vhich sppear in

——

- —

a triple:

father - o, = bill .

Now the body of the loop is executed_k_ times, once with each o, as the
value of x (considered to be an itemvar within the body). It—:a—_ogg was
initially empty it will be precisely the set {ol,... ok} at the end of
the execution of 2). If k=0, the body of the 1oop is not executed,

In this simple case the loop statement could be replaced by

2) sons « sons U father' bill .

3) foreach father . x = bill and gex - x = male dg a&t_:_c_ in sons
This statement 1s much the same as 2) exoept that the set of values

for x 4is made up of these items satisfying both associations, This

11

st Lt

keeps bill's daughters out of the set sons. Notice that the order in
‘ which the two relations are processed can be expected to have a marked
effect on performance, ie. there are probebly many more males than
children of bill. This situation will be discussed in Section 3.
W) (a) foreach father - father - x = z do make

grandad X EZ

(b) foreach father - X Ey %3 father . Y E 2 %

make grandad - X = z .

The atatements (a) and (b) above are entirely equivalent, the

compiler actually will transform (a) into (b) supplying a dummy local.

Assuning x,y,» are unbound locals, the statemen. (b) requires solving

for three loop variables. It is clearly inadequate to sclve for each
local independently; the system must form a n-tuple of items (a correg-
(; pondence) which satisfies the associative context. In this case the n-
tuple 18 an 3-tuple x,y,z. The correspondences are computed in advance
and the body of the loop executed once for each correspondence. For ex-

ample if the triples of the universe were

father * t = pill
father + pete = tom

father - bill = don

L e

father « george

clyde

the statement (b) would yiel. correspondences

tom, bill, dop

pete, tom, bill

&

et [PV . RS e e T

IR T

k]

sl s

MRETIT

R

g e i T e & -

¢

aF and after the execution of (t) the universe would also contain the

triples

e——— TR

grendad - tom = don

grandad - pete = bill

s GINTRRT e

1.4.3. Pragmatics

The implementation of rets was discussed briefly in Section 1.b.3.

The implementation of make and erase depend heavily on the structure and
AAAAS VAAA/

T e L I U Ut e

are discussed in Section 2.b,The loor statement over <set expressiord> 1is

actually a special case of the<associative context>loop, but is implemented

separately for efficiency. The associative loop is by far the most complex

construct in LEAP. The formation of correspondences entails building many

To TSt SRy) |4 T UL T

partial correspondénces which later must be discarded. This is, in itself,

a significant data structure problem and has been implemented with a hash-

AL S5y

coded triple scheme associating a correspondence number, a local, and an

item. This, combined with the order of processing considerations mentioned

in example 3 above make the compilation of the associative loop statement

Bl Ll

decidely non-trivial. This problem is discussed briefly in Section 2 and

at greac length in Hilbing's dissertation [13].

L

13

l.0.1. Semple programs

begin comment this progrem will find the polygon
in same figure which has the largest perimeter
and will write its name, number of sides &nd its
perimeter, We assume the number of sides of a
polygon is stored as its datum and the length
of a line is stored as its datum, the data base ia
assumed to be built in an outer block;

bR

:}% part,side,type,polygon;
Tep) sumymax;
o xi
ek et v

integer ﬂcf.‘%vw&r largest;

im figure;

read(figure);
‘...,(._E“.I;)i
max « O;

foreach part - figure = x oﬂ}i type - x E polygon g0
't:ggi’n sum « O;

foreach side . x Ey do
novyw fam—— } 1%

eum e sum + dgtpn(y);
if sum > max tv?‘r}

Priy —

begin largest « x; max sum end
CELO TEESEy - X TAT « i egt

end;

(R

wrv&ze(largest, dﬁ&u{%(largest),mix)

C
eng
' end
e
14

ekt R0 i AR A Bl

(BTN R ctped A thiadjo ae it g

oot e

[

TR A

. l.e.2.
b ¢

begin comment this program will determine if mary is related

8 g AT AT W llﬂl!]

to joe by virtue of the fact that mary's paternal sunt

is married to Joe's paternal uncle and, if so, will

ORI At) 0]

record that fact;

Ragin

iten father,mary, joe,sex,married,male,related,reason;

R E T

tesal x,v;

set uncles;
WAL

boolean switch;
AN

o e

uncles « P; switch « false;
— —_— " A

foreach father:x = father . fether . Jjoe &g&

L s s e BV

sex*X *= male do put x in uncles;
——— e A Cpeane e g et

R P T y 1T MO

foreach father' father « father - mary = X and

PAAAAr -

* =
married*(x) = y and y in uncles gdo

be@in

make related ° mary = joe;

w reason + (related + mary =

e (married . x £y);

g

switch « true;
—— o,

end;
e S

write (switch)
[-_—

2
y E

15

WY Y ey T

Il

2. The LEAP datsa-structure

The moat important construct in LEAP 1 the <associative cortext>

which implicitly specifies a collection of ITEMs. In this section we

Present a rather elaborate two-level storage scheme which was designed
to facilitate the procesaing of associative contexts, The problem of
retrieving the cbjects fram memory which are relatsd to a given object
has been a central concern in list processing systems since their inception,
The early list-processing languages (e.g. LISP [18], IPL [23]) achieved
a form of agssociative memory through the use.of property (description)
liats. This enablad one to specify the nume of a property (attribute)
and an object from which the system would retrieve the value or list of
values, This facility freed the user fram remembering which ordinal number
he had mentally associated with a property. The property list was imple-
mented as a list of (property, value) puirs linked to the object. When e
retrieval was to be made, the system would search the property list of the
speiciftied object for the specified property and would return the associuted
value. Although this feature of list processing systems is heavily used,
there are sericus problems witl'{ it from both a usage and an implementation
standpoint. All of the more recent attempts to produce associative retrieval
on conventional cagputers may be viewed as attempts to solve one or both
of these problems.
The problem with property lists from a user'a point of view was that
they are cne-way. If one has stored "SON(JOHN)=DON" there is no direct way
to f£ind the X such that "SON(X)=DN". This problem became particulerly

bothersame in camputer graphics and led tc the development of languages such

W

=
=
=
=
E
=
3
E)
3
3
2
32
i
EY

as 15 [15), CORAL [33, 34] AED (28], APL [7) and ASP[26] which have

LU L g

recently been surveyed [38). These languages automatically provided
two-way aasociations and, for reasons described in the next paragraph,

replaced the property 1list with a block (record) of continucus storage.

The abandonment of the property list was a victory for econamy over

T SITIRLITUTUT Lo

.

flexibility. The property list requires twe cells per association and

s

" requires searching at each retrieval, The idee of using a continuous

block of storage for the property list is not generally attributed to

Ross [27]. The idea is simple: Dby assigning & small integer to each

OWRTL TN LTl U Lt

attribute (e.g. SON ~ 5) one can achieve rapid retrievel and still only
use one cell per association. The usual implementation is to place the

address of the “cop of the block (internal name of the object) in an index

0O WAy g g

register and assemble a load or store instruction having that index field

and having the ettribute number in the address field. This scheme 1is

R B HSTR R L L

efficient and has bien used In & great variety of systems, but it too,

has drawbackas.
The first difficulty is that the size of the continuous blocks must

be srecified in advance. If a new atiribute is applied to en object at

least a partial recampilation is required. A further difficulty occurs

TIRPSIIATHICHIN N i 73 SRR o0 /™

in scheduling the numbers assigned to each attribute; there are three

} approaches to this problem:

a) Eliminate symbolic attribute names; this requires the user

40 remember the relative location of each attribute, but

does not require any extra space,(34] and to some extent [7].

b) Require that the type of block resulting from every asso-

4; ol-tive retrieval be campuiable at translation time (36, 37].
] u

e Lo - - B T s

This need not nlways » ¢~ axtra space but makes the
gystem impractical for the type of applicaticns considered
here. For example, the APL system [7] was developed because

of the inadequacy of PL/I for computer gruphics.

¢) Assign a unique camputation to each attribute name. This
allows an attribute to apply to any type of object, but
impose a scheduling problem on the user which usually re-

sults in wasted space [15].

In addition, all of these schemes share the problem that ihe entire block
of storage for an item must be allocated on the first use of that item,

The dats structure schemes discussed above were designed for problems
for which the arsociative structure rather simple and is contained in main
mernory, More recently, there have been attempts to extend these systems
to & paging environment [2, 9, 7]. The only previnus work on system ca-
pable of handling alli seven associative primitives (cf. Section 3.h) and
large data bases have been in query languages and information retrieval [6].
The thrust cf these efforis hes been rather different; they have generally
emphasized data bases too large for secondary storage and have allowed for

much slower response rates.,

2.b. .2e hash-coded associative memory scheme presented here ia an
attempt to solve the associative processing probiem for a large range of
applications, Hash-coding (scrambling) is a well known technique for
processing symbol tables, etc. [17, 19] and there was early speculation [21]

that hash-coding could lead to efficient associative processing. The par-

18

vt 3t AT b 0

RPN

W

A MM - a8 Mo 1

ticular scheme deseribed here is an exlinsion of our carlier work (8,

LYy
"

29, 30] which is designed to work cfficiently in a particular time-

sharing system [11].

. The first requirement that we place on an associative memory scheme is
that it be capable of answering the seven retrieval requests obtainecd by

substituting zerc, one or two variables into the association.

A U e

ATTRIBUTE - OBJECT = VALUE .

This requirement is an obvious cxtension of two-way links and has been very
useful in practice. The second major requirement is that any attributes,
objects and values may be cambined and that an association can itself be
used as an item, The third waj.u suguiranent is thut the time to retrieve
an associatior should be as small as possible and should be largely inde-
pendent of the total nu ' ~r of associations., A further requirement for

the system described here is that ii perform as well as possible using
secondary storage within the rules of the time-sharing system.

The problem is to represent & universe of associations (triples,
relations, facts) of ITEMs so as to meet the requirements of the preceding
paragraph. A dictionary phase converts each ITEM to a unigque integer so
we can consider & universe of triples of integers (A,0,V). The seven
primitive retrieval operations to be implemented are

1) (A,0,V)

2) (A,0,X)

3) (AX,V)

L) (x,0,V)

i 5) (AX,7)

6) (X,0,2)

’

L}
W

7) (X,2,V)

& where X,Z denote ungpecilicd pusiliuns {viriables).

There are the additional problems thet each variable may be multi-
valued and that a given primitive may assign values to two variables.

For example, if the universe were

) . . i ;! T
) i s o i e g Lol s b e i

(SON, DON, JOHN)

(SON, DON, JOE)

Ll

the following answers would result from primitive gquestions,

primitive question result

(son, DA, JON) (SON, DCN, JOHN) .

(SON, JOHN, JOE) NULL ,

(s, BON, X) X = {JOHN, JOEJ ‘
{ (X, DON, JOE) X = BON

(X, DON, 2) X = 8ON, Z = {JOHN, JOE}

(X, DON, DON) NULL

The basic ideas underlying the implementatior are simple, Consider

first the primitive questions involving one variable (numbers 2, 3, 4). :
For each of these we hash-code the specified items Lo get an address leeding

to the value of the unspecified one. This address is divided into a page é

eddress and a location within the page, Multiple answers are kept on &
linked 1list which 1s required to be entirely within the page, The first

primitive question (A,0,V) cen be answered using any of three pages; the

questions involving two variables are discuz-~u below.

The three primitive questions with ‘wo varlables each involve only

IR oAkl P AL o 00 Bk WA 01 0

(_, one specified item and so the answers c¢-+1d “e represented by a separate

i 1list for each item, The complicated siructure described below results fram

e i

T T UTTTYRECIYTNE T T

=TT

oA

e

prper e 1o

I L SN I,

AT T

i

=%

ettenpting to combine paging, hash-coding and lists in an efficient

manner,
There are three types of sections each of which is associated with
one of the positions A,9,V of the triple. The number of pages of each

type will vary with the size of the problem. We will consider a typical

Al i . o o A

A-section in some detamll and then show how to extend the discuassion to
0 and V sections.

A typlcel A-section contains all triples having items numbered n
to ntk in the A position of & triple. let us consider the simple case
of a triple t, = (ayo0,v) being placed in an otherwise empty memory.
The high-order bits of a determine the proper page for tl, the remainder
of a is hashed with o to give a location in the page. At this locatlion

8 cell of the following form will be constructed

o] 6 CONFLICT

a-USE v

Now a,0,v are the elements of t, and "6" is the vaiue of a tag
showing the type of our cell (cf. Tablie 1)}, The CONFLICT field is used
if more than one (a,0) pair hash to the same address, The a-USE field
is one link in the circuler list of all uses of the item 'a' in attribute
position; this 1list provides all the answers to the primitive question
(a,X,2)., The situation can get considerably more complicated ag ahown
in Figure 1. Figure 1 depicts a segment of the storage of an A type page
under the following conditions. The three pairs (a.l, 01), (AE, 02) and

(a ,0}) all hash-code to the same address, i.e. there is a three way con-

21

——

Figure 1.

A Begment of the Tt:ucture on an A-type Page (cf Teble 1).

3 e A el = Bt e = RS To rrimas a P
i &%) i
- e e e e e e e o —~— [— -.._...ﬁ..!
|-y — =7 ==Y — N e — — - =4 e N S N 3y =y ——

QI NIRRT EY | T

s b s i s e

BUR————— L b L e

N AR A

< g

B T s e

g

fliet. The associations (triples) represented are:
(al’ol’vl) (a2’02’v1+)
(al)ol)v2) (a3103’v5)
(a2’°2"’3)‘
In addition, the triples (al,ol,ve) and (ae,oe,vj) have been i
used as ITEMS in other assoclations; the internal item identifiers assigned j
to the respective triples are recorded in the bottom half of the type 5 cells. ‘
The meaning of each of the different cell types is given in Table 1. The
situation depicted in Figure 1 is a worst case and will occur infrequently.
Y
LW 4
22
S SRk = R - R e _ I i

CELL TYPE

w b e O

~ O o

PURPOSE OF A CELYL OF THAT TYPE

A two-register free block, !
Represents & TRIPLE in a collection of TRIPLEs.]
A one-register free block, 4

Represents a collection of TRIPLEs, in & i
"conflict" situation ?

Represents a collection of TRIFLEs.
Represents a TRIPLE which is used as an ITEM. ; ?
Represents a TRIPLE,

Represents a TRIPLE, in a "conflict" situation.

Table 1: Cell Types, and the Purpose for Each

—

ALY i St M

25

A - - D P Y) ” s

cmma e e PR N)

e

IR,

{7

petg; g 1

3

e

The o and v type pages ere orgenized in a similaer fashion.

Each O-page

contains 211 uses in the "object" position of some set of items. Also on

the O-page are the triples (X,o0,v) for the objects of this page and for

all v.

position and the triples (a,X,v) for all a.

Each V-page contains the uses of a set of items in the "value"

8ince we require that all

of the multiple values of a primitive associative question be contained

in one page, the pages will have to‘be of variable size, This 18 consisg-

tent with the conventions of the executive system [11], but does impose

an unusual storage allocation scheme,

The storage scheme described b - 15 designec to meet the requirements

of variable size pages containing three intertwined data structures. The

three structures are: The USE 1list, the hash-coded triplén, and the free

storage list.

The technique used is & variation of the standard idea of

allocating list spece and free storage from opposite ends of a block of

memory .

The central idea is the "striped" page;

we divide storage into

classes based on the low order bits; the particular scheme now in use is

described in Figure 2,

.

Every set of eight consecutlive registers 1s

divided into two which are addressable by hash-coding, one for the heads

of USE lists, and one single and two double free registers.

There are

many other possible arrangements and one could design a system which

changed the storage layout automatically.

Let us now consider the overall operation of the storage scheme in
ansvering the primitive associative questions.
(3), (4) are answered by hash coding A%, VE\, and OB/ respectively and

retrieving the set of answers from the list at the resulting location on

The three questions (2),

2k

RORCARS

!

NI

pu il

it o

ety |

o [

s gy

T3

BN Lk

PR RO It

[P AT

the appropriate A,V or O page. Tr *hree guestions involving only one
spccified item, (5), (6), (7) are answered directly from the USE list

for the item on the appropriate A, V or O page; the answer is a set of
0-V, A-O or V-A pairs. The fully specified association (1) can be tested
as either (2), (3), or (4) depending on which pages are in main memory.
Thus each primitive assoclation can be answefed in one page access and
without searching unless there is a hash-coding conflict. There are,

in addition, commands tc insert (MAKF) and delete (FERASE) triples from
the universe. The system also creates dummy ITEMs for triples used in
other triples.

As the reader has w:loubtedly discovered, the price for this generality
and efficlency s storsge space. Each association (triple) is represented
on an A, an O and a V type page; this requires approximately twice (not
thrice) the storage of our earlier scheme [8] because some of the in-
formation is implicit in the address at which the triple is stored. The
majér Jjustification for this storage redundancy is that it is only wasteful
of secondsry stérage; the main memory reguirements are actually smaller
then these of any other known scheme for answering all the primitive asgso-
clative questions.

There are some addiiionsal considerations which make the redundant
storage scheme less costly. Representing the information in three different
ways makes it possible to chocse different page distribution strategies
for each type. The system does not normally update the three effected

pages when a MAXE or KRASE is executed; it merely records the fact that

the page must be updated ihe next time it is bLrought into main memory to be
accessed. An obvious addition would be an UPDATE command which caused the

system to do the updating when time was available.

25

T o on SRS it s

- em e - e e vimmra im = e et s - - — ———

B

R 5 S

-
T 3, Conclusion

i fwmﬂml’n'rpmm.‘!{nﬂ!iW"Wm

U

The associative programming language, LEAP and the hash-coded

associative memory system have been in active use since ear 1967,
Yy 8Y

s R o A

Although tiiere have been many modifications of the gystem, the baslc

design has remained intact and appears to be sound. LEAP has become

L

the bdasic applications programming langusge for TX-2, although many

problems do not require an sassociative version. The associative features

g+

have bound application primarily in computer graphics.

We will briefly describe some typical applications, more detailed

WA

information can be requested thre._ 0 the authors. One applicetion is an
interactive program for the design of integrated circuits and the layout

of their masks., Another involves en interactive system for pole-zero cal-

- (e

culations in circuit design. There is also a program for displaying con-

g

strained [33] figures, a significant non-procedural problem, There are
also two large interactive programming systems which have been written in

LEAP., The first is a system for synthesizing animated cartoons from a set

LT L L RIS L TR

; . of continuous wave-forms speciqying the motion of parts of the picture [1].
] The second is the recently completed implamentation [31] of the two-dimen-
sional programming language Ambit/G {4). In eddition, a graphical debug-
ging package for associative structures hus been written.

The predominance of uses in interactive graphics systems is a result

of the interests of the user cammunity. While LEAP is unabashedly a special
purpose language, we anticipate applications in many areas of question

ansvering {6, 25} and artificial intelligence. There are continuations

) of same of the LEAF ideas in [17] and the as yet unpublished work of Allen

26

e - ARSI) i

Kay at Utah, Edward Sihley at M. i'_uwm

~

nd Tim Johnson at MIT, which
may extend the application arcas,

Our experiences with the LEAP language and data st -uclture has
suggested several possible extensions of each. The complete date structure
scheme described ir 3ection 2 has not yet been used to nearly its capacity 4
may be unnecessarily complicated for small graphics epplications. More
perticularly, it w-uld be very useful to develop a scheme which did not
require a page access to ascertain that an assoclation was not in the
store,

In general, the order in which an <associative context> is processed

Bttt AR e i et bt b i S
"
©
- Vool i

can have a profound effect on the performance of the system., For example, J

R o

consider two equivalenlts specification of the brothers of bill,

- 1) father' father(bill) and sex(x) = male

2) sex(x) = msle and father' father(bill)

The second version will require time (and space for corresponéences)
proportionsl to the number of males in the universe, A study of methods
for optimal reerrangement of associative statements has b -on completed [13]

and the methods developed there could be incorporated in the campiler,

In the associative language, as in most high-level language§ the

%
2
]
i

full form of certain constructs (e.g. <loop statement>) beccmes tedious;
the system could benefit from a simple macro processor [10]. The system o
also suffers from the lack of item and set functions, although procedures |
which have the same effect are available. At a more basic level one would

1ike the ability to manipulate entire correspondence structures (cf. Section

1.d4.2). Finally, a truly camplete associative system would include a

i MR R, e b

T AT 0= 4P R DA LA T

facility for implicitly solving for associations which are not explicitly

-

PO apiprater - AN e Sl oIS gt s o
i ,."_-,‘\u-.,,_,.lyr-rmnwxr~umnym‘*’w"ﬂf'ﬂw‘

RET

£

e Wy

Vs e

"

represented in the siructure; this .cguires a theorem proving program
as part of thc access mechanisnm,

The study of software associative processing is expanding rapidly
and there are a large number of sssociative languages under development,
Mcst of these are less aembitious than LEAP, but the proposals for graphical
(two-dimensional) languages [k4, 32] deserve some mention. An associative
structure is quite-naturally locked upon as a colored directed graph and
it seems that associative processing is a natural area for graphical languages.
After an early attempt to extend [34] to an associative language, we de-
cigded that this was not Teasible with current technology. Ironically,
the only currently availabtle graphical language was implemented in LEAP
[31]. It is t¢o early to predict the usefulness of this system and, in

any event, the problems of associative proc:ssing will be with us for

scve time to come.

28

= PRI AR R R WIE)

Dl

8'

10.

11.

12,

13.

k.

15.

R

9.

Ret'vronees

Baecker, R. M. A study of tue on-line computer aided generation of
animated displays, Fh.D. Disscrtation, Mass. Inst. Tech., 1968,

Bobrow, D. G., Murphy, D. L., "Structure of a LISP system using two-
level atorage,” Comm. AUM, 10 (Mnrch 1967), 155.

Bobrow, D. (Ed.) Symbol manipulution lonpuapes and technigues,
North Holland, 19068.

Christensen, C. "An cxample ot the munipulution of graphs using the
AMBIT/G programming lanpange,” Proce. Symp. Interactive Systems
in Experimental Applied Math., Mashington, D.C., 1967.

Cohen, J. "A use of fast wud sluv meworics In 1ist proccssing languages,”
Comm. ACM 10 (Feb. 196G(), H-86.

Cuadra, C. A. Annual Review of Information Science and Téchnologx,
New York, John Wilcy, 19606.

Dodd, G. G. “APL a lunpuupe lur associatlive date handling in PL/I,"
Proc. WCC, 19665,

Peldman, J. A. "Aspocls of wmisocintive processing,” M.I.T. Lincoln
Laboratory Tachnical Note 19GH-13%, April, 1965.

Peldman, J. A. "A formul somontles for computer lanpuages and its
application in a cumpiler-compiler,” Comm. ACM 9 (Jan. 1966), 3.

Feldman, J. A. And 1, Gri. s"Pranslulor writing systoems,”" Comm. ACM 1)
(Feb. 1968), T7-11%.

Forgle, J. W. et al. "A time sad memory sharing executive program,”
Prac. FICC, Las Vepgas, 1y,

Heanlan, A. E. "Content aldressuble und associative memory systems,"

Hilbing, F. J. The analysls ol strulepies for paping s large associative
data structure, Ph.D. Dissertation, Industrial Engineering,
Stanford University, 1966,

Iturriuga, R., Standish, T. A., Krutar, P. A. and Early, J. C.
"Pechniques and advantages of using the formal compiler writing
system FSL to implemenlL & formuln ALGOL, compiler,"” Proc. AFIPS
1966 SJCC, Vol. 28, pp. 2h1-52.

Knowlton, K. C. "A programmers description of Lﬁ," Comm. ACM 9

T N3 G,

L e e S W B P % R

16.

17.

18.

19.

20.

21,

22,

23,

2.

26.

28.

29.

3.

Leng, C. A. and J. Gray, "ASP-A ring implemented associative
structures packege,” Comm. ACM ? , 1968.

Laurance, N. “"A compiler languege for data structures,” preprint;
Ford Motor Compeny, Dearborn, Michigan, 1,.8.

McCarthy, J., et a.. Lisp 1.5 Programaer's Manual, M.1.T. Press,
Carhridpe, Massachusetts, 1962.

Maurer, W. D. "An improved hash code for scatter storage," Comm. ACM
11 (Jan. 1968), %5-38.

Mondshein, L. ¥. "VITAL compjler-compiler system reference manual,"
M.I.T. Lincoln Laboratory Technical Note 19G67-12, February, 1967.

Morrig, R. "Scatter storage techniques," Comm. ACM 11 (Jan. 1968),
384k .

Naur, P. et al. "Revised report on the algorithmic language ALGOI. 60,"
Comm. ACM 6 (Jan. 1963), 1-17.

Newell, A. (Ed.) Information processing language - V manual, Prentice-
Hall, Englewood Cliffs, N. J., 1961.

Newell, A. "A note on the use of scrambled addressing for associative '
memories," unpublished paper, December, 1962,

Raphael, B. "Sir, a computer program for semantic information retrieval,"
Proc. FJCC, 1964.

Roberts, L. G. "Machine perception of thrce-dimensional solids,"
M.I.T. Lincoln Laboratory Technical Report No. 315, May, 1963.

Ross, D. T. "A generalized technique for symbolc manipulation and
numerical computation,” Comm. ACM k& (March ;961), 147-150.

Ross D. T. "The AED approach to generalized computer aided design,"
Proc. ACM 22nd Natl. Conf. 1967, pp. 367-385.

Rovner, P. D. and J. A. Feldman, "An associative processing system for

conventional digital computers,” M.I.T. Lincoln Laboratory Technical
Note 1967-19, April, 1967.

Rovner, P. D. and J. A. Feldman, "The LEAP language and data str: cture,"

M.I.T. Lincoln Lab., January 1968. In abbreviated form, Proc. IFIP
Conf. 1968.

Rovner, P. D. "An Ambit/G programming langusge implementation,"
Lincoln Laboratory, M.I.T., June 1968.

30

32,

33.

3.

35.

37.

Savitt, D., H. H. Love, R. E. Troop, "ASP, & new concept in language
and machine orgenization," Proc. Spring Joint Comp. Conf. 1967.

Sutherland, I. E. "Skectchpad: a man-machine communication system,"
Proc. 8JCC, 1963.

Sutherland, W. R. "On-line graphical specification of procedures,"
M.I.T. Lincoln Laboratory Technical Report No. #05, May, 1966.

Teichrow, D. and Lubin, J. F. "Computer simulation — a discussion
of the technique and comparison of languages,'" Comm. ACM 9
(Oct. 1966), 727-7h41.

Van Wijngaarden, A. (Ed.) Draft report on ALGOL 68, MR 93, MATHEMATISCH

CENTRUM, Amsterdam, 1968.

Wirth, N. snd C.A.R. Hoare, "A contribution to the development cf
ALGOL," Comm. ACM 9 (June 1966).

Gray, J. C. "Compound da! . structures for coamputer aided design,"
Proc. ACM Natl, Conf., 1967.

31

=
E
L
=
=
A
£
3
E
3
3
i

Shelaine

- LSO AN

D T

T T =) m=TE
-
. g Cheunty Clinefication -
DOCUMENTY CONTROL DATA-R G D h
’ CSveurtty claszilicalina ol Hile, body of abatract and {adeaing annatation mant he antored whea the ovarali report 1= ctasalflvd) P
GV ONIGINATING ACTIVITY (Corporale auihar) 48, HEPORT SCCURITY CLAdsIbICATION !
N 3 = s : — r
+ Artificial TIntelligence Project Unclassified ;
Stanford University b, GROUP 4
Computer Science Department E
.3 RLPORY TITLE
: An Algol-Based Associative Language g
f
T4 DLYCRIPTIVE NOTLS (Type of repori end inclusive dates)
A, I, Memo
. B AUTHONIS) (Firal name, middie Initial, laat name) ’
“ J. A. Feldman, P. D. Rovner
;
o RLFORT DATL I‘ll. TOTAL NO. OF VACGES 7d. 110. OF REFS

¢ August 1, 1968 ! Bk 38
{9 CONTRACT OR GAANT NO. %8, ORIGINATOR'S REPORY NUMBLR(S)

y SD-183 AI-66

v

‘_ b. PROJECT NO.

i

¥

o €. 5. OTHER NLPORMT NO(S) (Any other nunbers thet ney be assigpnied
;»! thia repast)

.

f: 6.

SNty e s e sveraoT e T o L

1010 CiSTRIBUTION STATEMENT

i Statement No, 1 - Distribution of this document is unlimited

L ML SUPHPLEMENTARY NOTLS 123. SPONSORING MILITARY ACTIVITY

v

; 3. AuSTRACY

é A high-level programming language for large complex relational structures has been
. designed and implemented. The underlying relational data structure has been

» implemented using a has-coding technique. The discussion includes a comparison

" with other work and examples of applications of the language. A version of this

¢ paper will appear in the communications of the ACM.

; _
¢ v

y

) .

2T

.

[PRTR o 13

O TETSANERTT WL

T

AW . IR T . T A EERSERE A
1

DS Va4 73

Security Classilication

ST FUTIEVEIN

»

R L o S e

< i mm e mmn e b= mmem e s AUy VORI VR Py TS e et imm et e = n e i e s e

e d e e a

|
|
1
,_,

StCuiily Civovisnuliun

ENIS

e —— e i ma e =

: J
2 i
‘ S
U T T e e T o T T L.
|
_ !
i ﬂ !
.
_ I [
! .
. |
5 \ w
: |
n
£ 13
g _ L
’ < ! '
“wy %] . : *
s o ﬁ W !
3 5 & ! {
. P B | ” H
= b w m + H
: s 4 d I
[n u ﬂ . ﬁ
.) s !
= g 4 ¥ 3 ,
5 - o @ H
i Lo 3] i
; 3 @ O m 0 ; .
: / e 9 3 .
. [T I VI -1 i
» Q a b]
-} 29 2 5 m
| A J.I s N A o ;]
. — p— e e et e GBAgEAT" e e AB ARR R B sk RS e AR P D3 i i §. A LAk S O e ;
T Ng { S e . . H

" d
5 e e - - ————— - -

